手机扫码,微信咨询!

加速器发展历史-辐照射线报警仪,个人剂量监测委托服务,个人剂量报警器,射线剂量仪,射线剂量率报警仪,铅防护服,射线探伤防护网_广东_汕头

电话:86-021-69515711
传真:86-021-69515712

成先生-上海仁日辐射防护 客服

联系我们
关注:仁日科技
关注仁日科技;获取辐射防护知识!
推荐产品
  •   REN-2GM-H 双GM管超高量程射线探头

    REN系列智能化辐射探头均可和REN300、REN300A、REN300B系列主机配套使用,也可以单独配套RenRiArea辐射区域监测软件使用。且具有RS485/RS232的通讯能力。所有探头均可单独外接报警灯,在超阈值的情况下就地给出声光报警。 1、测量射线类型:X、γ射线2、探测器:2个GM

  •   REN500H 射线剂量率仪

    REN500H辐射防护用X、γ辐射剂量当量(率)仪是监测各种高剂量放射性工作场所的辐射剂量率专用仪器。仪器满足《环境地表γ辐射剂量率测定规范》中高剂量部分的要求。该仪器除能测高能γ射线外,还能对低能X射线进行准确的测量,具有良好的能量响应特性。此外通过配套的RenRiRate辐射剂量管理软件可将存储

  •   REN-GM45-Mul α、β、γ、X多功能射线探头

    REN系列智能化辐射探头均可和REN300、REN300A、REN300B系列主机配套使用,也可以单独配套RenRiArea辐射区域监测软件使用。且具有RS485/RS232的通讯能力。所有探头均可单独外接报警灯,在超阈值的情况下就地给出声光报警。 1、测量射线类型:α、β、γ、X射线2、探测器:

  •   REN500 便携式射线检测仪

          REN500型智能化χ、γ辐射仪采用高灵敏的闪烁晶体作为探测器,反应速度快, 和国内同类仪器相比,该仪器具有更宽的剂量率测量范围。 该仪器除能测高能、低能γ射线外,还能对低能X射线进行准确的测量,具有良好的能量响应特性。此外通过配套的Re

  •   REN300A 射线报警仪

      REN300A在线辐射安全报警仪是一种新型的x-γ辐射连续监测报警装置,它采用特殊设计的前置放大电路,具有灵敏度高、操作方便、自动显示和超阈值报警等特点,能实时给出xγ辐射剂量率;仪器内置海量数据存储功能,能存储10年的历史数据且标配提供强大的RenLocal辐射监测数据分析软件。考虑

  •   REN500L 环境级辐射仪

    REN500L环境监测用X、γ辐射空气比释动能率仪采用超大尺寸、高灵敏的闪烁晶体作为探测器,反应速度快。主机内置探测器使得整机有更宽的测量范围。仪器满足《环境地表γ辐射剂量率测定规范》中低剂量部分的要求。该仪器除能测高能、低能γ射线外,还能对低能X射线进行准确的测量,具有良好的能量响应特性。此外通过

  •   REN500A 辐射测量仪

         REN500A型环境监测用X、γ辐射空气比释动能率仪(又叫 智能化х、γ辐射仪)采用高灵敏的闪烁晶体作为探测器,反应速度快,该仪器具有较宽的剂量率测量范围。 该仪器除能测高能、低能γ射线外,还能对低能X射线进行准确的测量,具有良好的能量响应特性。此外

  •   铅屏风 分源防护屏

    单联移动式防护屏风 1、规格尺寸:  H×W:1800×900 (mm)2、商品描述:  上部铅有机玻璃的高度为   H×W:240×240 (mm)3、铅当量:  铅玻璃0.5mmPb,  下部分铅当量为0.5mmpb4、外饰材料:碳素钢板喷

技术文章

加速器发展历史

2007/2/3 14:24:00

1919年英国科学家卢瑟福(E.Rutherford)用天然放射源中能量为几个MeV、速度为2×109厘米/秒的高速α 粒子束(即氦核)作为“炮弹”,轰击厚度仅为0.0004厘米的金属箔的“靶”,实现了人类科学史上第一次人工核反应。利用靶后放置的硫化锌荧光屏测得了粒子散射的分布,发现原子核本身有结构,激发了人们寻求更高能量的粒子来作为“炮弹”的愿望。静电加速器(1928年)、回旋加速器(1929年)、倍压加速器(1932年)等不同设想几乎在同一时期提了出来,并先后建成了一批加速装置。

1932年美国科学家柯克罗夫特(J.D.Cockcroft)和爱尔兰科学家沃尔顿(E.T.S.Walton)建造成世界上第一台直流加速器——命名为柯克罗夫特-沃尔顿直流高压加速器,以能量为0.4MeV的质子束轰击锂靶,得到α 粒子和氦的核反应实验。这是历史上第一次用人工加速粒子实现的核反应,因此获得了1951年的诺贝尔物理奖。

1933年美国科学家凡德格拉夫(R.J.van de Graaff)发明了使用另一种产生高压方法的高压加速器——命名为凡德格拉夫静电加速器。

以上两种粒子加速器均属直流高压型,它们能加速粒子的能量受高压击穿所限,大致在10MeV。

奈辛(G.Ising)于1924年,维德罗(E.Wideroe)于1928年分别发明了用漂移管上加高频电压原理建成的直线加速器,由于受当时高频技术的限制,这种加速器只能将钾离子加速到50keV,实用意义不大。但在此原理的启发下,美国实验物理学家劳伦斯(E.O.Lawrence)1932年建成了回旋加速器,并用它产生了人工放射性同位素,为此获得了1939年的诺贝尔物理奖。这是加速器发展史上获此殊荣的第一人。

由于被加速粒子质量、能量之间的制约,回旋加速器一般只能将质子加速到25MeV左右,如将加速器磁场的强度设计成沿半径方向随粒子能量同步增长,则能将质子加速到上百MeV,称为等时性回旋加速器。

为了对原子核的结构作进一步的探索和产生新的基本粒子,必须研究能建造更高能量的粒子加速器的原理。1945年,前苏联科学家维克斯列尔(V.I.Veksler)和美国科学家麦克米伦(E.M.McMillan)各自独立发现了自动稳相原理,英国科学家阿里芳特(M.L.Oliphant)也曾建议建造基于此原理的加速器——稳相加速器。

自动稳相原理的发现是加速器发展史上的一次重大革命,它导致一系列能突破回旋加速器能量限制的新型加速器产生:同步回旋加速器(高频加速电场的频率随倍加速粒子能量的增加而降低,保持了粒子回旋频率与加速电场同步)、现代的质子直线加速器、同步加速器(使用磁场强度随粒子能量提高而增加的环形磁铁来维持粒子运动的环形轨迹,但维持加速场的高频频率不变)等。

自此,加速器的建造解决了原理上的限制,但提高能量受到了经济上的限制。随着能量的提高,回旋加速器和同步回旋加速器中使用的磁铁重量和造价急剧上升,提高能量实际上被限制在1GeV以下。同步加速器的环形磁铁的造价虽然大大减少,但因横向聚焦力较差,真空盒尺寸必须很大,造成磁铁的磁极间隙大,依然需要很重的磁铁,要想用它把质子加速到10GeV以上仍是不现实的。

1952年美国科学家柯隆(E.D.Courant)、李温斯顿(M.S.Livingston)和史耐德(H.S.Schneider)发表了强聚焦原理的论文,根据这个原理建造强聚焦加速器可使真空盒尺寸和磁铁的造价大大降低,使加速器有了向更高能量发展的可能。这是加速器发展史上的又一次革命,影响巨大。此后,在环形或直线加速器中,普遍采用了强聚焦原理。

美国劳伦斯国家实验室1954年建成的一台6.2GeV能量的弱聚焦质子同步加速器,磁铁的总重量为1万吨。而布鲁克海文国家实验室33GeV能量的强聚焦质子同步加速器,磁铁总重量只有4千吨。这说明了强聚焦原理的重大实际意义。

以上主要介绍的是质子环形加速器,对电子加速器来说情况有所不同。1940年美国科学家科斯特(D.W.Kerst)研制出世界上第一个电子感应加速器。但由于电子沿曲线运动时其切线方向不断放射的电磁辐射造成能量的损失,电子感应加速器的能量提高受到了限制,极限约为100MeV。电子同步加速器使用电磁场提供加速能量,可以允许更大的辐射损失,极限约为10GeV。电子只有作直线运动时没有辐射损失,使用电磁场加速的电子直线加速器可将电子加速到50GeV,这不是理论的限度,而是造价过高的限制。

加速器的能量发展到如此水平,从实验的角度暴露出了新的问题。使用加速器作高能物理实验,一般是用加速的粒子轰击静止靶中的核子,然后研究所产生的次级粒子的动量、方向、电荷、数量等,加速粒子能参加高能反应的实际有用能量受到限制。如果采取两束加速粒子对撞的方式,可以使加速的粒子能量充分地用于高能反应或新粒子的产生。

1960年意大利科学家陶歇克(B.Touschek)首次提出了这项原理,并在意大利Frascati国家实验室建成了直径约1米的AdA对撞机,验证了原理,从此开辟了加速器发展的新纪元。

现代高能加速器基本都以对撞机的形式出现,对撞机已经能把产生高能反应的等效能量从1TeV提高到10~1000TeV,这是加速器能量发展史上的又一次根本性的飞跃。

自世界上建造第一台加速器以来,七十多年中加速器的能量大致提高了9个数量级,同时每单位能量的造价降低了约4个数量级,如此惊人的发展速度在所有的科学领域都是少见的。

随着加速器能量的不断提高,人类对微观物质世界的认识逐步深入,粒子物理研究取得了巨大的成就。

加速器发展历史 的相关产品:
  • REN310型立柱式辐射监测系统

    产品名称:REN310型立柱式辐射监测系统

    产品描述:    REN310型立柱式辐射监测系统,主要用于放射性监测场所的行人或行包通过的监测系统,采用大体积的闪烁体探测器作为探测器,具有体积小,便于携带,灵敏度高,误差小的特点,适用与核应急等特殊的放射性检测场合。该系统主要由安装在现场的立柱和远程计算机系统组成。立柱内置的

  • REN400型X、γ、α、β、中子多功能辐射检测仪

    产品名称:REN400型X、γ、α、β、中子多功能辐射检测仪

    产品描述:     REN400型多功能辐射检测仪是以内置高灵敏度盖格计数管为探测器,外接不同类型的探头来实现对低剂量χ、γ射线,高剂量χ、γ射线,α、β射线和中子射线的检测。作为多功能辐射巡测仪,能显示工作场所的辐射值,自动连续测量和记录280万条辐射剂量率数据,更换

  • REN300型在线x-γ辐射安全报警仪

    产品名称:REN300型在线x-γ辐射安全报警仪

    产品描述:  REN300在线x-γ辐射安全报警仪是一种新型的x-γ辐射连续监测报警装置,它采用特殊设计的前置放大电路,具有灵敏度高、操作方便、自动显示、数据存储和超阈值报警等特点,能实时给出xγ辐射剂量率。考虑到现场操作、应急快速响应的需要,主机安装在辐射现场,实现实时监测与就地报警,通过RS48

  • REN500B型智能化X、γ辐射仪

    产品名称:REN500B型智能化X、γ辐射仪

    产品描述:   REN500B型智能化х-γ辐射仪是监测各种放射性工作场所х、γ射线辐射剂量率的专用仪器。该仪器具有较大的剂量率测量范围和能量响应特性。此外通过配套的RenRiRate剂量率管理软件可将存储的数据读出后分析。该仪器广泛用于卫生、环保、冶金、石油、化工、医院、加速器、工业探伤

  • REN300+REN-3He-N型固定式中子、伽玛报警仪

    产品名称:REN300+REN-3He-N型固定式中子、伽玛报警仪

    产品描述:本报警仪由REN300在线辐射安全报警仪和REN-3He-N中子探头和REN-NaI30伽玛探头组成。该辐射报警装置是采用特殊设计的前置放大电路,具有灵敏度高、操作方便、自动显示、数据存储和超阈值报警等特点,能实时给出x射线、γ射线、中子射线的辐射剂量率。考虑到现场操作、应急快速响应的需要,主机安装

  • REN-3He-N型中子剂量率探头

    产品名称:REN-3He-N型中子剂量率探头

    产品描述:       REN系列智能化辐射探头均可和REN300、REN300A、REN300B系列主机配套使用,也可以单独配套RenRiArea辐射区域监测软件使用。且具有RS485/RS232的通讯能力。所有探头均可单独外接报警灯,在超阈值的情